If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3+13x^2=2(x^2+3)
We move all terms to the left:
-3+13x^2-(2(x^2+3))=0
We calculate terms in parentheses: -(2(x^2+3)), so:We get rid of parentheses
2(x^2+3)
We multiply parentheses
2x^2+6
Back to the equation:
-(2x^2+6)
13x^2-2x^2-6-3=0
We add all the numbers together, and all the variables
11x^2-9=0
a = 11; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·11·(-9)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*11}=\frac{0-6\sqrt{11}}{22} =-\frac{6\sqrt{11}}{22} =-\frac{3\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*11}=\frac{0+6\sqrt{11}}{22} =\frac{6\sqrt{11}}{22} =\frac{3\sqrt{11}}{11} $
| A=5/9x^2-x+4 | | 3/4(n)+16=19 | | 3(m-4)=7m+4 | | -6x=6x+48 | | -17y=-18y-17 | | 27=36-v | | -m+17-18m=-19-16m | | 2(x+5)+10=6 | | 4x+10x=13+14 | | 17-8j=-3-6j | | 0.7(6x+4)=1.1-(x+3) | | 10+6v-6v=-10+4v | | x+1=342/8 | | (2x-3)÷7=3x÷7-2x | | p=2;p=4;p=6 | | -2x+3=8x-2 | | -17-d÷2=-32 | | -3(4x-)=6 | | 1+6r=-5+8r | | 3k-2=3 | | n/3-18=-11 | | -4+5u=9u | | -3x+20=4x-5 | | 3x=7=32 | | -1+2q=3q-10 | | -3(2x-70=-3 | | 21x+43=21x | | -9-5b=-8b | | 7(-2x+9)-5x=9 | | 9x/(7-6x)=15(2) | | 7(-2+9)-5x=9 | | -10g+10=-6g-10 |